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Motivation and objectives

 For optimal sweep efficiency, we need to 
understand and control zones of enhanced 
permeability (thief zones)
 Case study: naturally fractured chalk
 Seismic fault detection and sub-seismic fracture 

prediction from tectonic modeling used as input 
to locally refined reservoir simulation model
 Ensemble of models evaluated against 

production data and 4D seismic data
 Analysis limited to sector in the south of the field
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Key elements in workflow
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 Automation in seismic interpretation, tectonic modeling and reservoir simulation
 Tight integration between seismic data and locally refined simulation models
 Ensemble of models consistent with detected faults and predicted fractures

Detection of faults 
from seismic data

Model realizations: 
Permeability based on 

faults and fractures

Dynamic data: 
Production data, 
4D seismic data

Locally refined 
model (sector)

History matched 
models

Full-field model 
(coarse grid) Simulate and 

evaluate

IOR potential?

Sub-seismic 
fracture prediction 
(tectonic forward 

modeling)

Current focus Ultimate goal
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Outline

 Detection and characterization of faults from seismic data
 Fracture prediction by forward modeling of detected faults, constrained by well data
 Local grid refinement to capture fault and fracture characteristics in simulation grid

 Ensemble of models with different permeability characteristics
 Production data and 4D seismic data used to evaluate ensemble members
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Automated fault detection workflow – Medium to large scale
Edge Enhancement I [EOF]

Edge Enhancement II [Pseudo Gauss]Edge Enhancement III [Edge Evidence]

Edge Detection [Amplitude Contrast]Input [Seismic]

Output [Fault cube]
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Automated fault detection workflow – Medium to large scale
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Automated fault detection workflow – Medium to large scale
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Structural properties – Azimuth, planarity indicator
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 Input to tectonic modeling
 Basis for permeability parametrization
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Number of faults: 2198

NNW – SSE

ENE – WSW

NNE – SSW

Tectonic forward modeling to predict sub-seismic fractures
4 fault groups considered, based on tectonic history and well observations. Minor faults excluded. 

WNW – ESE
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Input and output data
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Output: Fracture intensities associated with each event (3D grids)
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NNW – SSE ENE – WSW NNE – SSWWNW – ESE

Fracture intensities constrained by well data. Directions parallel to well trajectory tend to be underestimated.
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Integrating faults and fractures in reservoir simulation model

 Model repository
 Fault groups with azimuth and planarity
 Fracture intensity for each group
 3D properties at seismic grid resolution, 

12.5 m x 12.5 m

 Full-field simulation model has grid 
dimensions of ~ 100 m x 100 m
 Refinement / upscaling needed
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Refinement / upscaling

 Objectives: 
 Discretize faults – preserve connectivity
 Keep simulation run time acceptable

 Current solution:
 Refinement of sector of full-field model, 

refined grid dimensions around 25 m
 Relative permeability curves still include 

mix of matrix and fracture characteristics
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Refinement / upscaling
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Fault groups and fracture intensities mapped into refined grid

16



Schlumberger-Private

Schlumberger-Private

Permeability parametrization – Combining matrix, faults and fractures
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 Matrix permeability (porosity correlation)
 Scaling factor <KMAT_SCALE>
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Permeability parametrization – Combining matrix, faults and fractures

 Matrix permeability (porosity correlation)
 Scaling factor <KMAT_SCALE>

 Fault permeability – per group
 WNW-ESE, NNW-SSE, ENE-WSW, NNE-SSW
 Permeability: <KG1>, <KG2>, <KG3>, <KG4>
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Permeability parametrization – Combining matrix, faults and fractures

 Matrix permeability (porosity correlation)
 Scaling factor <KMAT_SCALE>
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Permeability parametrization – Combining matrix, faults and fractures

 Matrix permeability (porosity correlation)
 Scaling factor <KMAT_SCALE>

 Fault permeability – per group
 WNW-ESE, NNW-SSE, ENE-WSW, NNE-SSW
 Permeability: <KG1>, <KG2>, <KG3>, <KG4>

 Fracture permeability – per group
 Fracture intensities mapped to 

(0,<KG1>), (0,<KG2>), (0,<KG3>), (0,<KG4>)
 Mapping options: linear, quadratic, cubic
 All contributions added to effective permeability
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Permeability parametrization – Combining matrix, faults and fractures

 Matrix permeability (porosity correlation)
 Scaling factor <KMAT_SCALE>
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Ensemble experiment – Setup
 Base case: modified from original model
 INTERSECT isothermal, black-oil
 Compaction by depletion only (no water weakening)
 Full-field model + local grid refinement
 Original coarse grid 436480 cells + 847745 local grid cells

 Ensemble of models for sector only
 Ensemble based reservoir tool (ERT)
 Open source, Statoil / Norwegian Computing Centre

 Initial ensemble: 
 <KMAT_SCALE> UNIFORM 0.5 1.5 (unit-less)
 <KG1> UNIFORM 0 50 (mD)
 <KG2> UNIFORM 0 50 (mD)
 <KG3> UNIFORM 0 50 (mD)
 <KG4> UNIFORM 0 50 (mD)
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Ensemble experiment – Automation
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Seismic data:
• Discontinuity cubes 

(location, azimuth, 
planarity)

• Fracture density cubes
• 4D seismic attribute cubes

LGRPropertyPopulator 
(Petrel plug-in)

Local grid refinement 
INTERSECT model

.h5 file:
• FAULT LOCATION
• FAULT AZIMUTH
• FRACTURE DENSITY
• KMAT
• Original PERMX, PERMY, PERMZ
• Original SATNUM, IMBNUM, ROCKNUM
• 4D seismic attributes

hdf5 
plug-in

Original simulation grid

Uncertain parameters:
• KMAT_SCALING
• FAULT_PERMEABILITY
• FRACTURE_PERMEABILITY
• ...

Original reservoir model

Observation data:
• WOPR, WGPR, WWPR, WWIR, WBHP
• AmpDiff, AI diff, time shift, time strain, ...

Hypothesis: Porosity well constrained, flow controlled by 
matrix + fault + fracture permeability

Ensemble based reservoir tool (ERT)

Linux cluster setupPrior: KMAT_SCALING, FAULT_PERM, 
FRACTURE_PERM, (per group / azimuth)

Ensemble of INTERSECT models

Compare with observation data

modify.py – PERM, SATNUM, IMBNUM, ROCKNUM 
from .h5 and prior

Simulated 
WOPR, WGPR, WWPR,

WWIR, WBHP

Rock physics (Matlab)

AI_DIFF, TIME_STRAIN

Ensemble smoother update

Simplified: 
isothermal, PVT, no 

water weakening

GRIDDING AND MAPPING
(IN PETREL)

MAKE DATA AVAILABLE OUTSIDE PETREL SIMULATION MODELS AND HISTORY MATCHING

Appropriate 
definition of 4D 

mismatch required

Import synthetics 
into Petrel using 

hdf5 plug-in



Schlumberger-Private

Schlumberger-Private

Ensemble experiment – Automation

 Realizations generated automatically 
from prior and posterior distributions of 
<KG1>, <KG2>, <KG3>, <KG4>, 
<KMAT_SCALE> 
 Simulations run in parallel (cluster)
 Processing of simulation results
 Extract relevant time lapse changes
 Run rock physics script

 Bitmaps of simulation results
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Simulation results exported as bitmaps (here: pressure fronts)
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Example: Ensemble end members
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PERMX 
(filter: > 10 mD)
Black lines: injectors

 Enhanced permeability of up to 50 mD 
for no groups, one group, two groups, 
three groups or all four groups
 => 16 ensemble end members
 KG1 = 0, KG2 = 0, KG3 = 0, KG4 = 0 
 KG1 = 0, KG2 = 0, KG3 = 0, KG4 = 50 
 ...
 KG1 = 50, KG2 = 50, KG3 = 50, KG4 = 50
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Evaluation: Production data

 Well deliverability check
 Need enough permeability around 

wells to inject / produce specified 
amount without violating bottom 
hole pressure constraints

 Rate and pressure mismatch
 Oil, gas and water production rates
 Bottom hole pressures
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Water 
injection 

rate

Injector 
BHP

Ensemble end member simulation results (lines) versus observed data (dots)
For some of the simulated cases, well deliverability fails because of bottom hole pressure constraints.

Note in particular the green line, which represents the case of matrix permeability only.
For the other cases, mismatch analysis of bottom hole pressures and production rates is feasible.

Oil 
production

rate

Gas 
production

rate

Water 
production

rate

Producer 
BHP

Example water injector Example producer
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Evaluation: 4D seismic data

 Focus on time strain around injectors
 Hardening (blue) 
 Water saturation increase
 Gas back into solution (pressure increase)
 Rock compaction
 Pressure reduction

 Softening (red)
 Gas out of solution (pressure reduction)
 Rock dilation (rock compaction below)
 Pressure increase

 Mapped into simulation grid for 
comparison with simulation results
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Time strain over 
period of 4 years 
(filter: hardening only)
Injectors in black.
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Evaluation: 4D seismic data versus simulation results
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Observed versus simulated time strain over time 
period of 4 years (filter: hardening only)

Simulated time strain
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Evaluation: Flow model and rock physics model
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Flow model: PERMX (filter: > 10 mD) Flow model: pressure increase (filter: > 200 psi) RPM: time strain > 1 % (filter: hardening only)

Observation: time strain > 1 % (filter: hardening only)Flow model: water saturation increase (filter: > 5 %)Flow model: gas saturation reduction (filter: > 5 %)

KG1 = 0, 
KG2 = 50, 
KG3 = 50, 
KG4 = 0
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Summary and further work
 Seismic fault detection and sub-seismic 

fracture prediction from tectonic modeling 
used as input to locally refined reservoir 
simulation model
 Permeability model: Matrix + faults + fractures
 Ensemble of models evaluated against 

production data and 4D seismic data

 Further work: 
 Ensemble smoother update, including rates, pressures 

and time strain in misfit term 
 Quantitative time strain mismatch might require further 

analysis and calibration of rock physics parameters
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Questions

Thank You!

Great Job!
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Key elements in workflow
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 Automation in seismic interpretation, tectonic modeling and reservoir simulation
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