Advanced Control Systems and Robotics (ELE600)
The course deals with feedback control systems, stability analysis, control parameter settings, gain scheduling, cascade control, feed forward control, deadtime compensation and multivariable control. The course builds on control engineering from the bachelor level and introduces more advanced methods for analysis and design of control systems. In addition, basic robotic technology, coordinate systems, the Denavit-Hartenberg convention, forward and inverse kinematics, and the use of feedback control for positioning and velocity control of robotic joints.
Course description for study year 2024-2025. Please note that changes may occur.
Course code
ELE600
Version
1
Credits (ECTS)
10
Semester tution start
Spring
Number of semesters
1
Exam semester
Spring
Language of instruction
Norwegian
Content
Learning outcome
Knowledge:
- The student will have an extended understanding of the concepts of mathematical modeling and simulation.
- The student will understand different control structures such as, cascade control, feed forward, deadtime compensation, gain scheduling, state feedback, multivariable control with linear and nonlinear decoupling, and also other control structures.
- The student will have knowledge about basic robotics, with focus on use of feedback control for positioning and velocity of robotic joints.
- The student will understand how rotational matrices and homogeneous transforms are used to describe the rigid motion of a robotic manipulator.
- The student will understand what makes a robot autonomous.
Skills:
- The student will be able to make mathematical models for arbitrary processes, both linear and nonlinear.
- The student will be able to find transfer functions and do frequency analysis.
- The student will be able to use different control structures (see above) and to tune their parameters in order to control arbitrary processes.
- The student will be able suggest a suitable control structure for a given process, and be able to list advantages and disadvantages with that control structure.
- The student will be able to make mathematical descriptions of a robotic manipulator and to use these descriptions to find the forward and inverse kinematic equations of the manipulator.
- The student will be able to design systems that makes it possible to control the position and velocity of the joints in a robot, both independently and multivariable.
General competence:
- After this course the student will have an extended understanding of control structures and control systems.
- The student will have basic understanding of robots and autonomous systems.
Required prerequisite knowledge
ELE320 Control Systems
BIE240 Control systems
Exam
Form of assessment | Weight | Duration | Marks | Aid |
---|---|---|---|---|
Written exam | 1/1 | 4 Hours | Letter grades | No printed or written materials are allowed. Approved basic calculator allowed |
Written exam with pen and paper.
Coursework requirements
6 compulsory assignments. Mandatory work demands (such as hand in assignments, lab-assignments, projects, etc) must be approved by subject teacher within the specified deadlines.
Completion of mandatory lab assignments are to be made at the times and in the groups that are assigned and published. Absence due to illness or for other reasons must be communicated as soon as possible to the laboratory personnel. One cannot expect that provisions for completion of the lab assignments at other times are made unless prior arrangements with the laboratory personnel have been agreed upon. Failure to complete the assigned labs on time or not having them approved will result in barring from taking the exam of the course.
Course teacher(s)
Course coordinator:
Kristian ThorsenHead of Department:
Tom RyenMethod of work
Overlapping courses
Course | Reduction (SP) |
---|---|
Advanced control systems (MIK140_2) | 6 |